extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C30)⋊1C22 = S3×C6×D5 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30):1C2^2 | 360,151 |
(C3×C30)⋊2C22 = C2×D5×C3⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 90 | | (C3xC30):2C2^2 | 360,152 |
(C3×C30)⋊3C22 = C2×S3×D15 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4+ | (C3xC30):3C2^2 | 360,154 |
(C3×C30)⋊4C22 = C2×D15⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30):4C2^2 | 360,155 |
(C3×C30)⋊5C22 = S32×C10 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30):5C2^2 | 360,153 |
(C3×C30)⋊6C22 = C22×C3⋊D15 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30):6C2^2 | 360,161 |
(C3×C30)⋊7C22 = C2×C6×D15 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | | (C3xC30):7C2^2 | 360,159 |
(C3×C30)⋊8C22 = D5×C62 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30):8C2^2 | 360,157 |
(C3×C30)⋊9C22 = S3×C2×C30 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | | (C3xC30):9C2^2 | 360,158 |
(C3×C30)⋊10C22 = C3⋊S3×C2×C10 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30):10C2^2 | 360,160 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C30).1C22 = C3×D5×Dic3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30).1C2^2 | 360,58 |
(C3×C30).2C22 = C3×S3×Dic5 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).2C2^2 | 360,59 |
(C3×C30).3C22 = C3×D30.C2 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).3C2^2 | 360,60 |
(C3×C30).4C22 = C3×C15⋊D4 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30).4C2^2 | 360,61 |
(C3×C30).5C22 = C3×C3⋊D20 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30).5C2^2 | 360,62 |
(C3×C30).6C22 = C3×C5⋊D12 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).6C2^2 | 360,63 |
(C3×C30).7C22 = C3×C15⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).7C2^2 | 360,64 |
(C3×C30).8C22 = D5×C3⋊Dic3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 180 | | (C3xC30).8C2^2 | 360,65 |
(C3×C30).9C22 = C3⋊S3×Dic5 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 180 | | (C3xC30).9C2^2 | 360,66 |
(C3×C30).10C22 = C30.D6 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 180 | | (C3xC30).10C2^2 | 360,67 |
(C3×C30).11C22 = C30.12D6 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 180 | | (C3xC30).11C2^2 | 360,68 |
(C3×C30).12C22 = C32⋊7D20 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 180 | | (C3xC30).12C2^2 | 360,69 |
(C3×C30).13C22 = C15⋊D12 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 180 | | (C3xC30).13C2^2 | 360,70 |
(C3×C30).14C22 = C15⋊Dic6 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 360 | | (C3xC30).14C2^2 | 360,71 |
(C3×C30).15C22 = Dic3×D15 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4- | (C3xC30).15C2^2 | 360,77 |
(C3×C30).16C22 = S3×Dic15 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4- | (C3xC30).16C2^2 | 360,78 |
(C3×C30).17C22 = C6.D30 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4+ | (C3xC30).17C2^2 | 360,79 |
(C3×C30).18C22 = D6⋊D15 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4- | (C3xC30).18C2^2 | 360,80 |
(C3×C30).19C22 = C3⋊D60 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4+ | (C3xC30).19C2^2 | 360,81 |
(C3×C30).20C22 = D6⋊2D15 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4+ | (C3xC30).20C2^2 | 360,82 |
(C3×C30).21C22 = C3⋊Dic30 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4- | (C3xC30).21C2^2 | 360,83 |
(C3×C30).22C22 = D30.S3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).22C2^2 | 360,84 |
(C3×C30).23C22 = Dic15⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30).23C2^2 | 360,85 |
(C3×C30).24C22 = D30⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30).24C2^2 | 360,86 |
(C3×C30).25C22 = C32⋊3D20 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).25C2^2 | 360,87 |
(C3×C30).26C22 = C32⋊3Dic10 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).26C2^2 | 360,88 |
(C3×C30).27C22 = C5×S3×Dic3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).27C2^2 | 360,72 |
(C3×C30).28C22 = C5×C6.D6 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30).28C2^2 | 360,73 |
(C3×C30).29C22 = C5×D6⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).29C2^2 | 360,74 |
(C3×C30).30C22 = C5×C3⋊D12 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 60 | 4 | (C3xC30).30C2^2 | 360,75 |
(C3×C30).31C22 = C5×C32⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C3×C30 | 120 | 4 | (C3xC30).31C2^2 | 360,76 |
(C3×C30).32C22 = C12.D15 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 360 | | (C3xC30).32C2^2 | 360,110 |
(C3×C30).33C22 = C4×C3⋊D15 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).33C2^2 | 360,111 |
(C3×C30).34C22 = C60⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).34C2^2 | 360,112 |
(C3×C30).35C22 = C2×C3⋊Dic15 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 360 | | (C3xC30).35C2^2 | 360,113 |
(C3×C30).36C22 = C62⋊D5 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).36C2^2 | 360,114 |
(C3×C30).37C22 = C3×Dic30 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | 2 | (C3xC30).37C2^2 | 360,100 |
(C3×C30).38C22 = C12×D15 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | 2 | (C3xC30).38C2^2 | 360,101 |
(C3×C30).39C22 = C3×D60 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | 2 | (C3xC30).39C2^2 | 360,102 |
(C3×C30).40C22 = C6×Dic15 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | | (C3xC30).40C2^2 | 360,103 |
(C3×C30).41C22 = C3×C15⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 60 | 2 | (C3xC30).41C2^2 | 360,104 |
(C3×C30).42C22 = C32×Dic10 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 360 | | (C3xC30).42C2^2 | 360,90 |
(C3×C30).43C22 = D5×C3×C12 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).43C2^2 | 360,91 |
(C3×C30).44C22 = C32×D20 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).44C2^2 | 360,92 |
(C3×C30).45C22 = C3×C6×Dic5 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 360 | | (C3xC30).45C2^2 | 360,93 |
(C3×C30).46C22 = C32×C5⋊D4 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).46C2^2 | 360,94 |
(C3×C30).47C22 = C15×Dic6 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | 2 | (C3xC30).47C2^2 | 360,95 |
(C3×C30).48C22 = S3×C60 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | 2 | (C3xC30).48C2^2 | 360,96 |
(C3×C30).49C22 = C15×D12 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | 2 | (C3xC30).49C2^2 | 360,97 |
(C3×C30).50C22 = Dic3×C30 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 120 | | (C3xC30).50C2^2 | 360,98 |
(C3×C30).51C22 = C15×C3⋊D4 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 60 | 2 | (C3xC30).51C2^2 | 360,99 |
(C3×C30).52C22 = C5×C32⋊4Q8 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 360 | | (C3xC30).52C2^2 | 360,105 |
(C3×C30).53C22 = C3⋊S3×C20 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).53C2^2 | 360,106 |
(C3×C30).54C22 = C5×C12⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).54C2^2 | 360,107 |
(C3×C30).55C22 = C10×C3⋊Dic3 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 360 | | (C3xC30).55C2^2 | 360,108 |
(C3×C30).56C22 = C5×C32⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C3×C30 | 180 | | (C3xC30).56C2^2 | 360,109 |
(C3×C30).57C22 = D4×C3×C15 | central extension (φ=1) | 180 | | (C3xC30).57C2^2 | 360,116 |
(C3×C30).58C22 = Q8×C3×C15 | central extension (φ=1) | 360 | | (C3xC30).58C2^2 | 360,117 |